US009262339B2

a2 United States Patent

Tliadis

US 9,262,339 B2
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) MANAGING WRITE OPERATIONS IN A

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(30)

Oct. 28, 2011

(1)

(52)

(58)

COMPUTERIZED MEMORY

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,

Armonk, NY (US)
Inventor:

Assignee:

Ilias Iliadis, Zurich (CH)

INTERNATIONAL BUSINESS

MACHINES CORPORATION,

Armonk, NY (US)

Notice:

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/742,348

Filed: Jun. 17, 2015

Prior Publication Data

US 2015/0286579 Al

Oct. 8, 2015

Related U.S. Application Data

Continuation of application No. 13/659,072, filed on
Oct. 24, 2012, now Pat. No. 9,092,316.

Foreign Application Priority Data

(EP)

Int. Cl1.
GO6F 12/00
GO6F 12/12
GO6F 12/02
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)

11187100

GO6F 12/123 (2013.01); GO6F 12/0246

(2013.01); GOGF 2212/69 (2013.01); GO6F
2212/7201 (2013.01)

Field of Classification Search
CPC

GOG6F 12/02; GOGF 12/0246; GOGF

2212/7205; GOG6F 2212/7209
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2007/0288531 Al 12/2007 Motta
2011/0029715 Al 2/2011 Hu
2011/0066808 Al 3/2011 Flynn
2011/0078496 Al 3/2011 Jeddeloh
2011/0093648 Al 4/2011 Belluomini
2011/0145473 Al 6/2011 Maheshwari

FOREIGN PATENT DOCUMENTS

WO WO 2011/033450 Al 3/2011

OTHER PUBLICATIONS

Rosenblum, et al., The Design and Implementation of a Log-Struc-
tured File System, ACM Transactions on Computer Systems, vol. 10,

No. 1, pp. 26-52, Feb. 1992.

Hu, et al., Write Amplification Analysis in Flash-Based Solid State
Drives, Israeli Experimental Systems Conference (SYSTOR), Haifa,
Israel, pp. 1-9, May 2009.

Hu, et al., Container Marking: Combining Data Placement, Garbage
Collection and Wear Leveling for Flash, IBM Research, Zurich,
Switzerland.

Primary Examiner — Gurtej Bansal
(74) Attorney, Agent, or Firm — Tutunjian & Bitetto, P.C.;
Jeff Tang

(57) ABSTRACT

A method, computer program product, and storage device for
managing a computerized memory for storing data are dis-
closed. Data updates are performed by writing data updates
out-of-place where data updates to outdated data are written
to a subunit different from a subunit containing the outdated
data. The subunit containing the outdated data is invalid,
while a subunit containing up-to-date data is a valid subunit.
A data structure is maintained for providing the m units in a
sorted way. A first subset of n units is selected out of the set of
m units with n<m by selecting units from n positions in the
data structure. Itis searched in the first subset to identify a unit
that matches a predetermined criterion, and data of valid
subunits of a unit identified in the first subset is rewritten into
at least another unit.

14 Claims, 3 Drawing Sheets

~10

START
~11

SET COUNTER TO -1 AND
SPECIFY A SEQUENCE OF
BLOCKS TO BE EXAMINED

{FIRST SUBSET OF BLOCKS QUT
OF A SET OF M BLOCKS)

Y

INVESTIGATE A NEXT BLOCK J
IN THE SEQUENCE OF BLOCKS
PRESENT IN THE FIRST SUBSET

SET AVARIABLE <LAST> TOJ

SEQUENCE OF
BLOCKS OF FIRST SUBSET
EXHAUSTED?

YES

ERASE BLOCK

U.S. Patent Feb. 16, 2016

Sheet 1 of 3

START

v

SET COUNTER TO -1 AND
SPECIFY A SEQUENCE OF
BLOCKS TO BE EXAMINED
(FIRST SUBSET OF BLOCKS OUT
OF A SET OF M BLOCKS)

Y

INVESTIGATE A NEXT BLOCK J
IN THE SEQUENCE OF BLOCKS
PRESENT IN THE FIRST SUBSET

BLOCK J
A BETTER CANDIDATE FOR
RECLAIMING?

NO

SET A VARIABLE <LAST>TO J

15

SEQUENCE OF
BLOCKS OF FIRST SUBSET
EXHAUSTED?

YES

US 9,262,339 B2

10

~1

12

~17

END

[«

ERASE BLOCK

FIG. 1

U.S. Patent

21

Feb. 16, 2016

Sheet 2 of 3

MEMORY
CONTROLLER

US 9,262,339 B2

HOST

STORAGE DEVICE

31

32

FIG. 2

MEMORY CONTROLLER

ROM

PROCESSING

RAM

35

UNIT

34

FIG. 3

33

36

U.S. Patent Feb. 16, 2016 Sheet 3 of 3 US 9,262,339 B2
&)
131 132133134 135 136 137 138I

I

2

FIG. 4

5
N [

FIG. 5

US 9,262,339 B2

1
MANAGING WRITE OPERATIONS IN A
COMPUTERIZED MEMORY

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a Continuation application of co-pend-
ing U.S. patent application Ser. No. 13/659,072, filed on Oct.
24,2012, which, in turn, claims priority under 35 U.S.C. §119
from European Patent Application No. 11187100.0, filed Oct.
28,2011, the entire contents of which are incorporated herein
by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to managing a computerized
memory for storing data.

2. Description of Related Art

Solid-state memory devices encompass rewritable non-
volatile memory devices which can use electronic circuitry
for storing data. Currently, solid-state memory devices start
replacing conventional storage devices such as hard disk
drives and optical disk drives in some arenas, such as in mass
storage applications for laptops or desktops. Solid state
memory devices are also investigated for replacing conven-
tional storage devices in other areas such as in enterprise
storage systems. This is because solid state memory devices
offer exceptional bandwidth as well as excellent random 1/O
(input/output) performance along with an appreciated robust-
ness due to lack of moveable parts.

However, writing data to a solid-state memory device such
as a flash memory device requires paying attention to specit-
ics in the flash technology: NAND flash memory is organized
in pages and blocks. Multiple pages form a block. While read
and write operations can be applied to pages as a smallest
entity of such operation, erase operations can only be applied
to entire blocks. And while in other storage technologies
outdated data can simply be overwritten by up-to-date data,
flash technology requires an erase operation before up-to-
date data can be written to an erased block.

Because flash technology erase operations take much
longer than read or write operations, a writing technique is
applied called “write out of place” in which new or updated
data is written to some free page offered by a free page
allocator instead of writing it to the same page where the
outdated data resides. The page containing the outdated data
is marked as invalid page.

The more data is written over time, the less free pages can
be offered and new blocks can need to be reclaimed for a free
block queue, i.e. a queue for providing free, i.e. erased blocks
for writing new, i.e. updated data to. New free blocks need to
be reclaimed from blocks filled with valid and/or invalid data.
The block reclaiming process—also known in literature as
“garbage collection process”—first identifies blocks for
cleaning based on a given policy. Then valid data still residing
in these blocks is copied (relocated) to other blocks, and
finally the blocks that now are free from valid data are erased
and become available again for rewriting. Consequently, the
reclaiming mechanism introduces additional read and write
operations, the extent of which depends on the specific policy
deployed as well as on system parameters. The additional
write operations result in the multiplication of user writes, a
phenomenon referred to as “write amplification”. As the num-
ber of erase/write operations that can be performed before a
solid state storage device wears out is limited, the extent of the
write amplification is critical because it negatively affects the

10

15

20

25

30

40

45

50

55

60

65

2

lifetime and endurance of solid state storage devices. There-
fore, a reclaiming mechanism is efficient when it keeps the
write amplification as low as possible, and also achieves a
good wear leveling in the sense of blocks being worn out as
evenly as possible.

In connection with log-structured file systems imple-
mented on a hard disk reclaiming mechanisms are discussed.
In “The Design and Implementation of a Log-Structured File
System” by M. Rosenblum and J. Ousterhout, ACM Trans-
actions on Computer Systems, Volume 10, No 1, pages 26-52,
February 1992, a technique for disk storage management
called a log-structured file system is introduced which writes
all modifications to a disk sequentially in a log-like structure,
thereby speeding up both file writing and crash recovery. The
log is the only structure on the disk; it contains indexing
information so that files can be read back from the log effi-
ciently. In order to maintain large free areas on disk for fast
writing, the log is divided into segments and uses a segment
cleaner to compress the live information from heavily frag-
mented segments. One of the cleaners introduced uses a
policy where it always chooses the least-utilized segments to
clean.

When put in context with a flash-based solid state drive, the
above policy introduces the usage of blocks only with the
smallest number of valid pages for erasure, such that it yields
the most amount of free space for reclaiming by means of a
single action. As systems encountered in practice are com-
prised of thousands of blocks, the above reclaiming process
can take a substantial amount of time to examine all of the
blocks in order to select the block with the minimum amount
of'valid pages. This is also the case when the number of valid
pages of blocks is constantly updated upon each host write.
Depending on the processor’s capabilities the time required
can be prohibitively long.

To reduce the number of CPU cycles consumed by the such
reclaiming process a windowed reclaiming scheme is pro-
posed in “Write Amplification Analysis in Flash-Based Solid
State Drives” by X.-Y. Hu, E. Eleftheriou, R. Haas, 1. [liadis,
and R. Pletka, in Proceedings of the Israeli Experimental
Systems Conference (SYSTOR), Haifa, Israel, pp. 1-9, May
2009. According to this scheme, occupied blocks are main-
tained in a queue according to the order in which they have
been written, with the oldest blocks occupying the first posi-
tions. The windowed reclaiming process restricts the selec-
tion process to the oldest w blocks only.

SUMMARY OF THE INVENTION

One aspect of the present invention provides a method for
managing a computerized memory for storing data where the
memory includes a set of m units and each of the m units
include subunits, the method including: maintaining a data
structure for providing the m units in a sorted way, selecting
a first subset of n units out of the set of m units with n<m by
selecting units from n positions in the data structure searching
in the first subset to identify a unit that matches a predeter-
mined criterion, and rewriting data of valid subunits of the
unit identified in the first subset into at least another unit, and
selecting a second subset of p units out of the set of m units
with p<m by selecting units from p positions in the data
structure, searching in the second subset to identify a unit that
matches a predetermined criterion, and rewriting data of valid
subunits of the unit identified in the second subset into at least
another unit, where the p positions in the data structure differ
in at least one position from the n positions in the data struc-
ture, where (i) data updates are performed by writing data
updates out-of-place, (ii) data updates to outdated data are

US 9,262,339 B2

3

written to a subunit different from a subunit containing the
outdated data, and (iii) the subunit containing the outdated
data is invalid, while a subunit containing up-to-date data is a
valid subunit.

Another aspect of the present invention provides a method
for managing a computerized memory for storing data where
the memory includes a set of m units and each of the m units
out of the set of m units include subunits, the method includ-
ing: maintaining a data structure in which the m units are
sorted according to an age of the units where the age of the
unit is defined as a time period since the unit was last written,
selecting a first subset of n units out of the set of m units with
n<m by selecting units from n positions in the data structure,
where at least one unit out of the n units of the first subset is
selected from a position in the data structure that holds a unit
younger than the n oldest units in the data structure, searching
in the first subset to identify a unit that matches a predeter-
mined criterion, and rewriting data of valid subunits of a unit
identified in the first subset into at least another unit, where (i)
data updates are performed by writing data updates out-of-
place, (ii) data updates to outdated data are written to a sub-
unit different from a subunit containing the outdated data, and
(iii) the subunit containing the outdated data is invalid, while
a subunit containing up-to-date data is a valid subunit.

Another aspect of the present invention provides a storage
device, including: a memory including a set of m units where
each of the m units includes subunits and the subunits contain
either up to date data in a valid subunit or outdated data in an
invalid subunit, a data structure in which the m units are sorted
according to an age of the units where the age of a unit is
defined as a time period since the unit was last written, a
memory controller adapted to write data updates to a subunit
different from the subunit the outdated data is contained,
where the memory controller is further adapted to (i) select a
first subset of n units out of the set of m units with n<m by
selecting units from n positions in the data structure, (ii)
search in the first subset to identify a unit that matches a
predetermined criterion, and (iii) rewrite data of valid sub-
units of a unit identified in the first subset into at least another
unit, and where the memory controller is further adapted to (i)
select a second subset of p units out of the set of m units with
p<m by selecting units from p positions in the data structure,
(i1) search in the second subset to identify a unit that matches
a predetermined criterion, and (iii) rewrite data of valid sub-
units of a unit identified in the second subset into at least
another unit, and where the p positions in the data structure
differ in at least one position from the n positions in the data
structure.

Another aspect of the present invention provides a storage
device, including: a memory including a set of m units where
each of the m units includes subunits and a subunit contain
either up to date data in a valid subunit or outdated data in an
invalid subunit, and a data structure in which the m units are
sorted according to an age of the units where the age of the
unit is defined as a time period since the unit was last written,
amemory controller adapted to write data updates to a subunit
different from the subunit the outdated data is contained,
where the memory controller is further adapted to select a first
subset of n units out of the set of m units with n<m by
selecting units from n positions in the data structure, and
where at least one unit out of the n units of the first subset is
selected from a position in the data structure that holds a unit
younger than the n oldest units in the data structure.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention and its embodiments will be more fully
appreciated by reference to the following detailed description

10

15

20

25

30

35

40

45

50

55

60

65

4

of presently preferred but nonetheless illustrative embodi-
ments in accordance with the present invention when taken in
conjunction with the accompanying drawings.

FIG. 1 is a flow diagram of a method according to an
embodiment of the present invention.

FIG. 2 is a block diagram of a storage device according to
an embodiment of the present invention.

FIG. 3 is ablock diagram of a memory controller according
to an embodiment of the present invention.

FIG. 4 is a schematic illustration of a portion of the
memory space of a flash based memory according to an
embodiment of the present invention.

FIG. 5 is a schematic illustration of a data structure used in
a data storage device according to an embodiment of the
present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following, it can be referred to blocks instead of
units, and to pages instead of subunits. Blocks and pages
follow a nomenclature used in connection with flash-based
solid-state storage devices. For the entire application it is
understood that neither the content nor the scope of protection
shall be restricted to the flash-based storage technology. Any
other solid state storage technology such phase change
memories and magnetic RAM memories shall be encom-
passed. Also log structured arrays shall be encompassed
where data updates to outdated data are not written to the
subunit containing the outdated data, but to other subunits
denoted collectively as a log which provides which typically
cannot be subunits subsequent to each other in the organiza-
tion of the storage device but can be scattered around the
storage device and be offered by an allocation engine.

As an introduction to the following description, it is first
pointed at a general aspect of the invention, concerning a way
of managing a computerized memory for storing data, and in
particular for identifying a unit in the memory which unit is to
be prepared for erasure.

In memories of interest data is stored in units where each of
the units includes subunits. The separation of the memory
space into units and subunits can be owed to physical or
technological characteristics of such memories according to
which e.g. a unit can constitute the smallest entity for erase
operations while a subunit can constitute the smallest entity
for read or write operations. In such memories, data updates
are written to a subunit or unit different to the subunit or unit
the outdated data is contained in. The one or more subunits
containing the outdated data are invalid. During operation, in
a representative unit invalid subunits can exist next to valid
subunits where a subunit containing data up to date is consid-
ered a valid subunit. Invalid subunits can be marked as such.
Or, a data structure specifying a validity/invalidity property of
the subunits can be maintained. Over time, more and more
units can contain a mix of valid and invalid subunits where
some of the units can contain more valid subunits than invalid
subunits and others can contain more invalid subunits than
valid subunits. The more data is written to such memory, the
more limited the free memory space available for writing
becomes.

In the flash memory arena, a data structure or engine
respectively denoted as free block queue or free block allo-
cator provides blocks free of data and ready to be written. A
free block typically is a block that was recently erased and is
not rewritten yet. However, such free block queue can dry out
and can no longer provide a sufficient number of free blocks
for the current data input such that a process is triggered for

US 9,262,339 B2

5

reclaiming one or more blocks. Reclaiming a block basically
is understood as converting a block yet containing data—be it
valid or invalid or both—into a free block by erasing the
existing data from such block. The block reclaiming mecha-
nism first identifies blocks for cleaning/erasing according to a
given policy. Any valid data in an identified block is subse-
quently copied/relocated to other blocks of the memory, and
finally the identified block/s is/are erased so that it/they
become/s available for rewriting. Such block reclaiming pro-
cess requires additional read and write operations and its
computation time depends on the policy for identifying such
blocks and also on the amount of valid data contained in these
blocks. It was found, however, that the system performance is
primarily affected by the write operations for the following
reasons: First, the times required to write data are much
longer than those to read data. Second, the number of erase/
write operations that can be performed before a flash memory
device wears out is limited. Consequently, the extent of these
additional writes, referred to as “write amplification”, is
desired to be kept low in order to prolong the lifetime and
endurance of the flash memory device.

In order to identify a block for reclaiming within a small
subset of blocks available, it is preferred in present concepts
that oldest blocks can be preferred to look at first for the
reason that such old blocks are not being written for a long
time for the reason these blocks can fully be occupied which
in turn can indicate only few valid pages remaining in such
blocks. In this context, a large number of updates can result in
a small number of valid pages left. However, it turns out that
for large systems with a large number of pages per block and
operating under uniformly distributed random small user
writes, a scheme where only a subset of oldest blocks is
investigated for identifying a block to be erased, can still
reduce the write amplification, but the rate of improvement in
this respect can decrease the more number of pages are allo-
cated to a block. The reason for this is that the distribution of
valid pages contained in the blocks residing within the subset
of oldest blocks is biased because the blocks that contain a
small number of valid pages can already be removed in pre-
vious cycles of reclaiming blocks. In addition, blocks con-
taining a large amount of static data being rarely updated can
show up amongst the oldest blocks but can still contain many
valid pages that need to be relocated prior to an erasure. On
the other hand, other blocks containing few valid pages can
still be updated quite often and barely make it therefore into
the subset of oldest block for being identified for erasure
although being suited for being reclaimed.

Hence, according to the present idea the block to be erased
is identified from a first subset of n blocks out of a set of m
blocks which first subset of n blocks is a proper subset of the
set of m blocks, i.e. n<m. A data structure is maintained for
providing the m blocks of the set of m blocks in a sorted
fashion, for example according to an age index. Such data
structure can be represented by a list, a queue or a ring, or a
pointer pointing towards the blocks. A schematic example of
such data structure 5 in form of a queue is shown in FIG. 5, in
which data structure m positions 1 . . . m are provided for
holding m blocks sorted according to a criterion. Such crite-
rion can be the age of a block which age in the present context
can be defined as a time period since the block is written at
last. In this context, an old block which shows a long period in
time since the block was written at last can in many instances
represents a block that is fully occupied for quite some time
by valid and invalid pages such that no new data can be
written to such block any longer. However, other blocks that
are not written for quite some time due to lack of data to be
updated can represent an old block, too. Of course, the age of

25

40

45

6

a block can be determined by means of a time stamp a block
was written at last. A block is understood to be of older age
compared to a block of younger age, when the time period
since the older block was written at last exceeds the time
period since the younger block was written at last. The m
blocks of the set of m blocks can be sorted according to their
age—which age also is denoted as age index—and can be
arranged in the data structure such as a queue, for example, by
increasing or decreasing age, for example.

According to one aspect, for determining n blocks for the
first subset, the blocks from/residing at n positions in the data
structure are included in the first subset. The n positions
preferably are predefined positions. In the present aspect, a
composition of the first subset of n blocks can contain at least
one block from a position in the data structure that holds a
block younger than the n oldest blocks in the data structure.
For example, the data structure including the m blocks sorted
by decreasing age with the oldest block residing at the first
position of the data structure, the first n positions represent the
presently n oldest blocks out of the set of m blocks. For
selecting blocks to be included in the first subset of n blocks
at least one block is taken from a position other than the n first
positions, which holds a block that does not belong to a group
of the n oldest blocks. Such concept allows for younger
blocks in the data structure to be selected for the first subset
that in turn is investigated for identifying a block for erasure.
In such first subset of n blocks, the investigation/search for a
block suited for erasure can be carried out sequentially
amongst the blocks being sorted according to age. In an
embodiment, every v-th block from the data structure can be
chosen for the first subset of blocks with v being an integer
and v>1, such that blocks are considered for the first subset
from positions 1, 1+v, 142*v, . . ., 1+(n-1)*v in the data
structure/queue. Parameter v can be fixed, or can be dynami-
cally varying over repeated applications of the reclaiming
process. Position 1 denotes the first position in the queue
holding the oldest block of the data structure.

According to another aspect, the positions in the data struc-
ture from which the blocks are selected for inclusion in a
subset can vary for each block reclaiming cycle. Given that a
first subset of n blocks out of the set of m blocks can be
selected by including blocks from n positions in the data
structure, a second subset of p blocks out of the set of m
blocks can be selected by including blocks from p positions in
the data structure, where the n positions differ at least in one
position from the p positions. Positions of subsequent subsets
of blocks can differ from previous ones in at least one posi-
tion. In case n=p and for each block reclaiming cycle the
number of blocks in the associated subset remains the same,
a block from at least one different position in the data struc-
ture can be included in the subsequent block reclaiming cycle
in which the second subset of p blocks is composed. In case n
is not equal to p, the first and the second subset differ in blocks
from at least one different position in the data structure.

For example, the first subset of blocks can contain blocks
residing in positions 1, 2, . . . » in the data structure with such
positions being subsequent positions starting at position 1 of
the data structure the oldest block is mapped to. Then, a
search for a suitable block for erasure can be carried out
sequentially amongst these blocks representing the first sub-
set sequentially amongst the blocks ordered, for example
according to an age index, which sequence can then be rep-
resented by blocks at positions 1, 2, . . . » again. In anext cycle
of identifying a block to be erased, a second subset of p=n
blocks can be composed from, e.g. p=n blocks then residing
atp positions in the data structure which p positions can differ
in at least one position from the n positions the blocks are

US 9,262,339 B2

7

selected for in the previous reclaiming cycle. For example,
blocks at p=n successive positions following the n-th position
in the data structure are building the second subset in a next
block reclaiming cycle, and so on. Generally, the set of these
p=n positions can be shifted by v (modulo some number) in
every reclaiming cycle with respect to a reference position
which can, for example, be the first position or the last posi-
tion used in the data structure for selecting a block from in the
previous reclaiming cycle.

In another preferred embodiment, the n=p positions are
varying by shifting them one position to the right (modulo v).
Thus, in a first cycle of the reclaiming process the blocks at
positions 1, 1+v, 1+2*v, . . ., 1+(n-1)*v in the queue are
examined, in a second run of the reclaiming process blocks at
positions 2, 2+v, 2+42%*v, . . ., 24(n-1)*v in the queue are
examined, at the k th run blocks at positions k, k+v, k+2*
v, ..., k+(n-1)*v in the queue are examined, and at the with
run blocks at positions v, 2*v, . . . , n*v in the queue are
examined. This pattern is continuously repeated, such that at
the (v+1)th run blocks at positions 1, 1+v, 1+2%v, . . .,
1+(n-1)*v in the queue are examined again. In another
embodiment, positions can be shifted by an arbitrary amount
to the right in the queue, i.e. up-shifted, or to the left in the
queue, i.e. down-shifted with a rotation occurring according
to modulo v.

Hence, it is preferred in this aspect that the second subset of
blocks is built in a different way than the first subset, i.e.
blocks from different positions in the data structure are
selected for building the second subset of blocks than are
selected for building the first subset of blocks. In the above
examples, the value of v can be either fixed or varying over
multiple reclaiming cycles. It is noted that between the two
block reclaiming cycles, the memory can be continued to be
read and written, and insofar the data structure can be updated
such that different blocks reside at the positions in the data
structure.

The criterion according to which a block out of a subset of
blocks is identified can either be known in advance, or can be
dynamically obtained by monitoring the number of relocated
pages at an initial phase, or at regular intervals. It can be
dynamically adjusted as the operational characteristics of the
system change. Once a block is identified in the search pro-
cess the preparation for erasure of such block can include
copying, transferring or rewriting all valid subunits of this
block to one or more other blocks subject to availability of
free pages on such other blocks.

The proposed block reclaiming scheme can perform effi-
ciently and fast. Its corresponding computation time mea-
sured in CPU cycles and write amplification are very low, and
also blocks are worn out as evenly as possible and to a very
little degree. The proposed block reclaiming mechanism can
dynamically be adjusted as the operational characteristics of
the system change. Various tradeoffs are possible in terms of
write amplification, implementation complexity, and latency.
In such way, an efficient and fast process of reclaiming units
can be implemented for solid state storage devices, and also
for log-structured file systems.

In the figures, same or similar elements are denoted by the
same reference signs.

FIG. 1 shows a flow chart of a method according to an
embodiment of the present invention.

In step 10 the method is started. In step 11 a counter <last>
is set to —1 and a sequence of blocks to be examined, i.e. the
first subset, is specified out of the a set of m blocks, for
example according to any one of the subset composition
mechanisms as described in the previous paragraphs. In step
12 the block reclaiming process investigates a next block j in

20

25

40

45

55

8

the sequence of blocks present in the first subset of blocks. In
step 13 it is determined if such block j is a better candidate for
reclaiming than the block that is presently identified as pre-
ferred block in variable <last>. The criterion employed here
can be the number of'valid pages of a block. Thus, a candidate
block j presently investigated is considered to be better than
the recorded block considered to be preferred so far and
indicated by the variable <last>, if the number of its valid
pages is less than the number of valid pages of the recorded
block in <last>. If the present block j is better than the block
identified by <last> (Y), then <last>is set to j in step 14. If not
(N), it is determined if the sequence of blocks of the first
subset to be investigated is exhausted in step 15. If the
sequence is not yet exhausted (N) in step 15, then the next
block in the sequence is considered in step 12. If the sequence
is exhausted (Y) and consequently all blocks in the sequence
have been examined, the block identified by <last> is the
block that will be reclaimed. This implies that all valid pages
of'this block are relocated in another block, or blocks, in step
16, and before it is erased, again in step 16. The process
defining a block reclaiming cycle is stopped in step 17, and a
new block reclaiming cycle can be started again in step 10 in
case the free block queue indicated that the number of free
blocks in the free block queue is less than a threshold. In case
of'such trigger for reclaiming another block, the present steps
10 to 17 can be repeated for identifying another block fulfill-
ing the criterion out of the blocks that then contribute to the
first subset. Since in the meantime, reads and writes were
applied to the memory and the order of blocks in the queue
can have changed between two cycles even if the fixed posi-
tions are taken from the queue for building the subsets for
each cycle, the blocks in the subset can be different across
multiple block reclaiming cycles.

FIG. 2 shows a block diagram of a storage device according
to an embodiment of the present invention. The storage device
1 includes a flash based solid state memory 2 with a block/
page memory space structure. Few of the blocks are indicated
as 21. A memory controller 3 is controlling the activities of
the flash memory 2—as such the memory can be described as
a computerized memory. The memory controller 3 specifi-
cally is adapted for writing data to and reading data from the
memory 2, and for executing all administrative tasks in con-
nection with the reading and writing of data. Specifically, the
memory controller 3 writes updates to a page of a block to one
or more blocks different to the block the outdated data is
contained in a “write out-of-place” fashion. When doing so,
the memory controller 3 flags the one or more pages contain-
ing the outdated data as invalid. From time to time, the
memory controller 3 executes a search amongst a specified
subset of blocks in order to identify a block that matches a
predetermined criterion, which in the present embodiment is
the least number of valid pages in such block. Once such
block is identified, the memory controller 3 initiates the
rewriting of data of valid pages of this identified block to
pages of another block, and possibly even to multiple other
blocks. In this context, the memory controller 3 is responsible
for running a method according to any of the embodiments
described above. The memory controller 3 further is con-
nected to a host 4 which makes use of the storage device 1 for
storing data. Hence, the host 4 issues read and/or write com-
mands to the storage device 1.

In order to implement the method according to any one of
the embodiments as described above, the memory controller
3 preferably provides a computer program code preferably
stored in a non-volatile, non-rewritable storage medium such
as a ROM 31, see FIG. 3. The storage controller further
provides a RAM 32 for loading the program code into, and a

US 9,262,339 B2

9

processing unit 33 for executing the program code in the
RAM 32. Internal communication systems 34 are provided
for communicating between the components of the memory
controller 3, and an interface 35 is provided for communicat-
ing with the flash memory, while another interface 36 can be
provided for any communication with the host.

FIG. 4 schematically illustrates a part of a flash memory 2
organized in blocks of which few blocks 131 to 138 are
explicitly shown. Pages are indicated as horizontal stripes in
a column like illustrated block. All the blocks 131 to 138 are
data blocks adapted for holding user data and can include
pages containing invalid data and pages containing valid data.
In the present example, it is assumed that block 133 has been
identified for erasure by means of the above process. As a
result, the pages containing valid data are copied, i.e. rewrit-
ten to another block, i.e. block 135 in the present example,
which block currently supports the writing of new or updated
data. With respect to such relocation of data, logical to physi-
cal address mappings are updated. According to the present
routine, the respective pages in block 133 now containing
outdated data are flagged as invalid pages. In a next step,
entire block 133 can be erased, and can be added to in a free
block queue.

As will be appreciated by one skilled in the art, aspects of
the present invention can be embodied as a system, method or
computer program product. Accordingly, aspects of the
present invention, in particular in form of the controller, can
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that can all generally be referred to herein as
a “circuit,” “module” or “system.” Furthermore, aspects of
the present invention, such as the read and write methods, can
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) can be utilized. The computer readable medium can be
a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium can
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer readable storage medium can include the follow-
ing: an electrical connection having one or more wires, a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium can be any tangible medium that can contain, or store
a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium can include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal can take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium can be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
can be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

10

15

20

25

30

35

40

45

50

55

60

65

10

Computer program code for carrying out operations for
aspects of the present invention can be written in any combi-
nation of one or more programming languages, including an
object oriented programming language such as Java, Small-
talk, C++ or the like and conventional procedural program-
ming languages, such as the “C” programming language or
similar programming languages. The program code can
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer can be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection can
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions can be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions can also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions can also be loaded onto
a computer, other programmable data processing apparatus,
or other devices to cause a series of operational steps to be
performed on the computer, other programmable apparatus or
other devices to produce a computer implemented process
such that the instructions which execute on the computer or
other programmable apparatus provide processes for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams can represent a module, segment, or portion of
code, which includes one or more executable instructions for
implementing the specified logical function(s). It should also
be noted that, in some alternative implementations, the func-
tions noted in the block can occur out of the order noted in the
figures. For example, two blocks shown in succession can, in
fact, be executed substantially concurrently, or the blocks can
sometimes be executed in the reverse order, depending upon
the functionality involved. It will also be noted that each block
of'the block diagrams and/or flowchart illustration, and com-
binations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com-
puter instructions.

US 9,262,339 B2

11

The invention claimed is:

1. A method for managing a computerized memory for
storing data wherein the memory comprises a set of m units
and each of the m units comprises subunits, the method com-
prising:

maintaining a data structure for providing the m units in a

sorted way, selecting a first subset of n units out of the set
of' m units with n<m by selecting units from n positions
in the data structure searching in the first subset to iden-
tify a unit that matches a predetermined criterion, and
rewriting data of valid subunits of the unit identified in
the first subset into at least another unit; and

selecting a second subset of p units out of the set of m units

with p<m by selecting units from p positions in the data
structure, searching in the second subset to identify a
unit that matches a predetermined criterion, and rewrit-
ing data of valid subunits of the unit identified in the
second subset into at least another unit, wherein the p
positions in the data structure differ in at least one posi-
tion from the n positions in the data structure,

wherein the units are sorted in the data structure according

to an age of the units, and the units of the first subset are
selected from the data structure by including the units
from every v-th position in the data structure, with v
being an integer and v>1, while omitting from the first
subset intermediate units in between the every v-th posi-
tion in the data structure.

2. The method according to claim 1, wherein (i) data
updates are performed by writing data updates out-of-place,
(ii) data updates to outdated data are written to a subunit
different from a subunit containing the outdated data, and (iii)
the subunit containing the outdated data is invalid, while a
subunit containing up-to-date data is a valid subunit.

3. The method according to claim 1, wherein an age of a
unit is defined as a time period since the unit was last written,
and wherein the units are sorted in the data structure accord-
ing to one of increasing and decreasing age.

4. The method according to claim 1, wherein the units of
the second subset are selected from the data structure by
including the units from positions that are offset in the data
structure by v positions in a first direction with y being an
integer and v>0 with respect to the positions used for select-
ing the units for the first subset.

5. The method according to claim 1, wherein the first subset
is selected at a first point in time, the second subset is selected
at a second point in time following the first point in time, and
wherein in between the first point in time and the second point
in time the data are read from and written to the memory.

6. The method according to claim 5, wherein during the
first point in time and the second point in time the data
structure is updated, and wherein the first point in time and the
second point in time denote points in time a unit reclaiming
process is triggered.

7. A method for managing a computerized memory for
storing data wherein the memory comprises a set of m units
and each of the m units out of the set of m units comprises
subunits, the method comprising:

maintaining a data structure in which the m units are sorted

according to an age of the units wherein the age of the
unit is defined as a time period since the unit was last
written;

selecting a first subset of n units out of the set of m units

with n<m by selecting units from n positions in the data
structure;

20

25

40

45

50

55

12

searching in the first subset to identify a unit that matches
a predetermined criterion; and

rewriting data of valid subunits of a unit identified in the
first subset into at least another unit,

wherein the first subset of units is selected from the data
structure by including the units from every v-th position
in the data structure, with v being an integer and v>1,
while omitting from the first subset intermediate units in
between the every v-th position in the data structure.

8. The method according to claim 7, wherein (i) data
updates are performed by writing data updates out-of-place,
(i1) data updates to outdated data are written to a subunit
different from a subunit containing the outdated data, and (iii)
the subunit containing the outdated data is invalid, while a
subunit containing up-to-date data is a valid subunit.

9. The method according to claim 7, wherein the criterion
involves the number of valid subunits of a unit.

10. The method according to claim 7, wherein the unit with
the lowest number of valid subunits amongst all the units of
the first subset or the second subset is identified.

11. The method according to claim 7, wherein the memory
is one of a non-volatile solid state memory device and a
memory of a log-structured file system.

12. The method according to claim 7, wherein the memory
is a flash memory device, and wherein the units are blocks and
the subunits are pages of the flash memory device.

13. A computer program product comprising a non-transi-
tory computer readable storage medium having computer
readable program code embodied therewith, the computer
readable program code comprising computer readable pro-
gram code configured to perform a method according to claim
1.

14. A storage device, comprising:

a memory comprising a set of m units wherein each of the
m units comprises subunits and the subunits contain
either up to date data in a valid subunit or outdated data
in an invalid subunit;

a data structure in which the m units are sorted according to
an age of the units wherein the age of a unit is defined as
a time period since the unit was last written; and

a memory controller adapted to write data updates to a
subunit different from the subunit the outdated data is
contained, wherein the memory controller is further
adapted to (i) select a first subset of n units out of the set
of m units with n<m by selecting units from n positions
in the data structure, (ii) search in the first subset to
identify a unit that matches a predetermined criterion,
and (iii) rewrite data of valid subunits of a unit identified
in the first subset into at least another unit, and wherein
the memory controller is further adapted to (i) select a
second subset of p units out of the set of m units with
p<m by selecting units from p positions in the data
structure, (ii) search in the second subset to identify a
unit that matches a predetermined criterion, and (iii)
rewrite data of valid subunits of a unit identified in the
second subset into at least another unit, wherein the p
positions in the data structure differ in at least one posi-
tion from the n positions in the data structure, and

wherein the first subset of units is selected from the data
structure by including the units from every v-th position
in the data structure, with v being an integer and v>1,
while omitting from the first subset intermediate units in
between the every v-th position in the data structure.

#* #* #* #* #*

